我在 x_stats = dec(z).float()
行出现错误。
import torch.nn.functional as F
z_logits = enc(x)
z = torch.argmax(z_logits, axis=1)
z = F.one_hot(z, num_classes=enc.vocab_size).permute(0, 3, 1, 2).float()
x_stats = dec(z).float()
x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3]))
x_rec = T.ToPILImage(mode='RGB')(x_rec[0])
display_markdown('Reconstructed image:')
display(x_rec)
我尝试降级并重新安装 torch
软件包,但这对问题没有帮助。我的包版本是 torch==1.11.0
完整追溯:
AttributeError Traceback (most recent call last)
/Users/hanpham/github/DALL-E/notebooks/usage.ipynb Cell 4' in <cell line: 7>()
4 z = torch.argmax(z_logits, axis=1)
5 z = F.one_hot(z, num_classes=enc.vocab_size).permute(0, 3, 1, 2).float()
----> 7 x_stats = dec(z).float()
8 x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3]))
9 x_rec = T.ToPILImage(mode='RGB')(x_rec[0])
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
1106 # If we don't have any hooks, we want to skip the rest of the logic in
1107 # this function, and just call forward.
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
File /opt/homebrew/lib/python3.9/site-packages/dall_e/decoder.py:94, in Decoder.forward(self, x)
91 if x.dtype != torch.float32:
92 raise ValueError('input must have dtype torch.float32')
---> 94 return self.blocks(x)
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
1106 # If we don't have any hooks, we want to skip the rest of the logic in
1107 # this function, and just call forward.
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/container.py:141, in Sequential.forward(self, input)
139 def forward(self, input):
140 for module in self:
--> 141 input = module(input)
142 return input
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
1106 # If we don't have any hooks, we want to skip the rest of the logic in
1107 # this function, and just call forward.
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/container.py:141, in Sequential.forward(self, input)
139 def forward(self, input):
140 for module in self:
--> 141 input = module(input)
142 return input
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1110, in Module._call_impl(self, *input, **kwargs)
1106 # If we don't have any hooks, we want to skip the rest of the logic in
1107 # this function, and just call forward.
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/upsampling.py:154, in Upsample.forward(self, input)
152 def forward(self, input: Tensor) -> Tensor:
153 return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
--> 154 recompute_scale_factor=self.recompute_scale_factor)
File /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/module.py:1185, in Module.__getattr__(self, name)
1183 if name in modules:
1184 return modules[name]
-> 1185 raise AttributeError("'{}' object has no attribute '{}'".format(
1186 type(self).__name__, name))
AttributeError: 'Upsample' object has no attribute 'recompute_scale_factor'
回答1
我认为您的问题可能类似于 https://github.com/ultralytics/yolov5/issues/6948。
我不熟悉 pytorch;但建议是:
等待下一个版本(不是很好的建议,抱歉)
注释掉https://github.com/ultralytics/yolov5/issues/6948#issuecomment-1075528897中指出的代码,即:
在 /opt/homebrew/lib/python3.9/site-packages/torch/nn/modules/upsampling.py
行 153-154
中:
改变:
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
recompute_scale_factor=self.recompute_scale_factor)
至:
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
# recompute_scale_factor=self.recompute_scale_factor)
或者
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
# recompute_scale_factor=self.recompute_scale_factor
)
在我看来,作为一种“解决方法”,您可以执行注释掉选项,直到出现新版本,您可以撤消 comment out
并升级。
虽然我同意这是一个“答案”,但它并不是完美的答案。我很抱歉。
回答2
torch 1.11.0 也出现此错误很想听听人们如何解决它
看起来这是 1.11.0 的问题:https://github.com/openai/DALL-E/issues/54
编辑:按照这些说明为我解决了这个问题:https://github.com/openai/DALL-E/issues/54#issuecomment-1092826376